Opposing roles for Hoxa2 and Hoxb2 in hindbrain oligodendrocyte patterning.

نویسندگان

  • Andrés Miguez
  • Sébastien Ducret
  • Thomas Di Meglio
  • Carlos Parras
  • Hatem Hmidan
  • Céline Haton
  • Sowmya Sekizar
  • Abdelkrim Mannioui
  • Marie Vidal
  • Aurélien Kerever
  • Omar Nyabi
  • Jody Haigh
  • Bernard Zalc
  • Filippo M Rijli
  • Jean-Léon Thomas
چکیده

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hoxa2 and Hoxb2 Control Dorsoventral Patterns of Neuronal Development in the Rostral Hindbrain

Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several gene...

متن کامل

Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse.

Early in its development, the vertebrate hindbrain is transiently subdivided into a series of compartments called rhombomeres. Genes have been identified whose expression patterns distinguish these cellular compartments. Two of these genes, Hoxa1 and Hoxa2, have been shown to be required for proper patterning of the early mouse hindbrain and the associated neural crest. To determine the extent ...

متن کامل

Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes.

Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice....

متن کامل

Different levels of Hoxa2 are required for particular developmental processes

Hoxa2 is required for a variety of developmental processes in the branchial arches and in the hindbrain. We have created a Hoxa2 allele that is about 45% as active in transcription as its wild-type counterpart. This allele, together with the Hoxa2 null and wild-type alleles, allowed the generation of embryos developing in the presence of different levels of Hoxa2 activity. Analysis of these emb...

متن کامل

Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling

The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 48  شماره 

صفحات  -

تاریخ انتشار 2012